Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Bio Med Chem Au ; 2(6): 586-599, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36573096

RESUMO

Staphylococcus aureus (S. aureus) is an invasive and life-threatening pathogen that has undergone extensive coevolution with its mammalian hosts. Its molecular adaptations include elaborate mechanisms for immune escape and hijacking of the coagulation and fibrinolytic pathways. These capabilities are enacted by virulence factors including microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) and the plasminogen-activating enzyme staphylokinase (SAK). Despite the ability of S. aureus to modulate coagulation, until now the sensitivity of S. aureus virulence factors to digestion by proteases of the coagulation system was unknown. Here, we used protein engineering, biophysical assays, and mass spectrometry to study the susceptibility of S. aureus MSCRAMMs to proteolytic digestion by human thrombin, plasmin, and plasmin/SAK complexes. We found that MSCRAMMs were highly resistant to proteolysis, and that SAK binding to plasmin enhanced this resistance. We mapped thrombin, plasmin, and plasmin/SAK cleavage sites of nine MSCRAMMs and performed biophysical, bioinformatic, and stability analysis to understand structural and sequence features common to protease-susceptible sites. Overall, our study offers comprehensive digestion patterns of S. aureus MSCRAMMs by thrombin, plasmin, and plasmin/SAK complexes and paves the way for new studies into this resistance and virulence mechanism.

2.
Biophys Rev ; 14(2): 427-461, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35399372

RESUMO

The coagulation cascade represents a sophisticated and highly choreographed series of molecular events taking place in the blood with important clinical implications. One key player in coagulation is fibrinogen, a highly abundant soluble blood protein that is processed by thrombin proteases at wound sites, triggering self-assembly of an insoluble protein hydrogel known as a fibrin clot. By forming the key protein component of blood clots, fibrin acts as a structural biomaterial with biophysical properties well suited to its role inhibiting fluid flow and maintaining hemostasis. Based on its clinical importance, fibrin is being investigated as a potentially valuable molecular target in the development of coagulation therapies. In this topical review, we summarize our current understanding of the coagulation cascade from a molecular, structural and biophysical perspective. We highlight single-molecule studies on proteins involved in blood coagulation and report on the current state of the art in directed evolution and molecular engineering of fibrin-targeted proteins and polymers for modulating coagulation. This biophysical overview will help acclimatize newcomers to the field and catalyze interdisciplinary work in biomolecular engineering toward the development of new therapies targeting fibrin and the coagulation system.

3.
J Struct Biol ; 212(1): 107581, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32717326

RESUMO

Modular polyketide synthases (PKSs) are molecular-scale assembly lines comprising multiple gigantic polypeptide subunits. Faithful ordering of the subunits is mediated by extreme C- and N-terminal regions called docking domains (DDs). Decrypting how specificity is achieved by these elements is important both for understanding PKS function and modifying it to generate useful polyketide analogues for biological evaluation. Here we report the biophysical and structural characterisation of all six PKS/PKS interfaces in the unusual, chimaeric cis-AT/trans-AT PKS pathway responsible for biosynthesis of the antibiotic enacyloxin IIa in Burkholderia ambifaria. Taken together with previous work, our data reveal that specificity is achieved in the enacyloxin PKS by deploying at least three functionally orthogonal classes of DDs. We also demonstrate for the first time that cis-AT PKS subunits incorporate DDs with intrinsically disordered character, reinforcing the utility of such regions for achieving both medium affinity and high specificity at PKS intersubunit junctions. Overall, this work substantially increases the number of orthogonal DDs available for creating novel, highly-specific interfaces within cis- and trans-AT PKSs and their hybrids. It also reveals unexpected sequence/structure relationships in PKS DDs, identifying major current limitations to both accurately predicting and categorising these useful protein-protein interaction motifs.


Assuntos
Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Subunidades Proteicas/metabolismo , Burkholderia/metabolismo , Peptídeos/metabolismo , Polienos/metabolismo , Mapas de Interação de Proteínas/fisiologia
4.
Nat Commun ; 11(1): 683, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996686

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Nat Commun ; 10(1): 553, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696828

RESUMO

In the original version of this Article, the final concentration of riboflavin in the supplemented LB medium for recombinant LkcE expression was incorrectly stated as 1 g L-1 (this was the concentration of the stock solution) and should have read 10-50 mg L-1. This error has been corrected in both the PDF and HTML versions of the Article.

6.
Nat Commun ; 9(1): 3998, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30266997

RESUMO

Acquisition of new catalytic activity is a relatively rare evolutionary event. A striking example appears in the pathway to the antibiotic lankacidin, as a monoamine oxidase (MAO) family member, LkcE, catalyzes both an unusual amide oxidation, and a subsequent intramolecular Mannich reaction to form the polyketide macrocycle. We report evidence here for the molecular basis for this dual activity. The reaction sequence involves several essential active site residues and a conformational change likely comprising an interdomain hinge movement. These features, which have not previously been described in the MAO family, both depend on a unique dimerization mode relative to all structurally characterized members. Taken together, these data add weight to the idea that designing new multifunctional enzymes may require changes in both architecture and catalytic machinery. Encouragingly, however, our data also show LkcE to bind alternative substrates, supporting its potential utility as a general cyclization catalyst in synthetic biology.


Assuntos
Proteínas de Bactérias/metabolismo , Macrolídeos/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Streptomyces/metabolismo , Amidas/química , Amidas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Vias Biossintéticas/genética , Macrolídeos/síntese química , Macrolídeos/química , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Conformação Proteica , Multimerização Proteica , Homologia de Sequência de Aminoácidos , Streptomyces/enzimologia , Streptomyces/genética , Especificidade por Substrato
7.
J Am Chem Soc ; 138(12): 4155-67, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-26982529

RESUMO

Modular polyketide synthases (PKSs) direct the biosynthesis of clinically valuable secondary metabolites in bacteria. The fidelity of chain growth depends on specific recognition between successive subunits in each assembly line: interactions mediated by C- and N-terminal "docking domains" (DDs). We have identified a new family of DDs in trans-acyl transferase PKSs, exemplified by a matched pair from the virginiamycin (Vir) system. In the absence of C-terminal partner (VirA (C)DD) or a downstream catalytic domain, the N-terminal DD (VirFG (N)DD) exhibits multiple characteristics of an intrinsically disordered protein. Fusion of the two docking domains results in a stable fold for VirFG (N)DD and an overall protein-protein complex of unique topology whose structure we support by site-directed mutagenesis. Furthermore, using small-angle X-ray scattering (SAXS), the positions of the flanking acyl carrier protein and ketosynthase domains have been identified, allowing modeling of the complete intersubunit interface.


Assuntos
Aciltransferases/metabolismo , Policetídeo Sintases/metabolismo , Virginiamicina/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Virginiamicina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...